Reptilia: Squamata (lizards)

Anolis (Norops) tropidonotus Peters 1863. **Reproduction.** Ongoing debate exists regarding the generic arrangement of the Dactyloidae. A discussion of this issue is beyond the scope of this work, and herein we chose to maintain use of the generic name *Anolis*. *Anolis tropidonotus* (*sensu lato*) recently was split into four species (*A. mccraniei*, *A. spilorhipis*, *A. tropidonotus*, and *A. wilsoni*), which on the Atlantic versant collectively are distributed from central Veracruz, Mexico, to north central Nicaragua, and on the Pacific versant from extreme northern El Salvador to south-central Honduras (McCranie and Köhler, 2015; Köhler et al., 2016). These medium-sized anoles are found in a wide variety of forested habitats, at elevations from near sea level to 1,900 m (McCranie and Köhler, 2015). Considering the recent taxonomic modifications, the distribution of *A. tropidonotus* now is restricted to the Atlantic versant of Mexico (including the Yucatan Peninsula), Belize, and Guatemala (Köhler et al., 2016).

On 25 September 2015, at 1600 h, we collected an adult female *A. tropidonotus* (Fig. 1) at El Tepeyac, Municipio de Eloxochitlán, Puebla, Mexico (18.486417°N, 96.857611°W, WGS 84; elev. 100 m). The collecting site is less than 200 m from the Río Tepeyac, a major tributary of the Río Papaloapan, and a rocky stream flows nearby; the vegetation consists of lowland semi-evergreen forest, and the lizard was active on the ground on top of deep leaf litter. The specimen was deposited in the herpetological collection of the Museo de Zoología “Alfonso L. Herrera,” Facultad de Ciencias, Universidad Nacional Autónoma de México (MZFC 30038). The snout–vent length (SVL) of the specimen was recorded as 52.2 mm. Upon dissection, we found that the specimen contained one egg and numerous yolked ovarian follicles. The egg is ellipsoidal and the major and minor axes measure 10.4 and 6.5 mm, respectively. The diameter of the follicles ranged from 0.5 and 4.4 mm; most follicles were closer to the lowest value of the size range, with four individuals measuring closer to 4.4 mm in diameter. We spent approximately 2 h sampling in the area and did not capture another female, whereas we collected four males.

Fig. 1. A specimen (MZFC 30038) of *Anolis tropidonotus* in life. © Carlos J. Pavón Vázquez

Despite its wide range and local abundance, relatively few studies have addressed the reproductive biology and natural history of *A. tropidonotus* (*sensu lato*). In particular, little reproductive information is available for the Mexican populations. Based on a survey conducted in Honduras in late May of 1972, Jackson (1973) commented on the population biology of a mid-elevation population now assignable to *A. mccraniei*. He found that all the females with an SVL greater than 40 mm showed yolked ovarian follicles, and inferred that they had laid only one egg since the onset of the reproductive season. Additionally, he also captured more adult males than adult females (56 and 28, respectively), and attributed the disparity to collecting bias because females appeared to be more terrestrial and wary. In their monograph on the anoles of Honduras, McCranie and Köhler (2015) indicated that the
reproductive season of *A. tropidonotus* (*sensu lato*) begins at the end of the dry season and peaks during the rainy season. Additionally, Campbell (1998) noted that females of *A. tropidonotus* laid several single egg clutches during the course of a reproductive season, as previously has been recorded in other anoles (Andrews and Rand, 1974). This information is consistent with our observations as a single egg and multiple vitellogenic follicles were present in MZFC 30038.

Acknowledgments.—Fieldwork was conducted under a collecting permit issued to Uri O. García-Vázquez by the Secretaria de Medio Ambiente y Recursos Naturales (permit number FAUT-0243). We thank Adrián Nieto-Montes de Oca for providing the facilities for examining the specimens, Edmundo Pérez-Ramos for cataloguing material into the MZFC collection, and Louis W. Porras for his valuable comments on a draft of this manuscript.

LITERATURE CITED

CARLOS J. PAVÓN-VÁZQUEZ¹, MARYSOL TRUJANO-ORTEGA¹, ARTURO ARELLANO-COVARRUBIAS¹, AND URI O. GARCÍA-VÁZQUEZ²

¹Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-153, México 04510, D.F., Mexico. E-mail: cjpvunam@gmail.com (Corresponding author)

²Carrera de Biología, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de mayo s/n, Ejército de Oriente, México 09230, D.F., Mexico.

Aspidoscelis deppii (Weigmann, 1834). **Diet.** *Aspidoscelis deppii* is a terrestrial, locally abundant, diurnal teiid that in Nicaragua is known to feed on insects, spiders, opilionids, pseudoscorpions, centipedes, crustaceans, mollusks, and plant seeds (Vitt et al., 1993), as well as younger conspecifics (Alemán and Sunyer, 2014).

On 11 December 2015 at 0950 h, at playa El Bancón (11.47677°N, 85.63116°W, datum WGS 84; elev. 35 m), Reserva Ecológica Charco Verde, Reserva de la Biósfera Isla de Ometepe, Departamento de Rivas, Nicaragua, JGMF and FAR observed an adult female *A. deppii* chasing a juvenile *Sceloporus variabilis* on a freshwater beach, ca. 8 m from the shoreline. The general area contained relatively well-preserved patches of Lowland Dry Forest (Holdridge, 1967; Savage, 2002). The *A. deppii* subdued the *S. variabilis* by biting it on the neck and shaking it violently until it died (Fig. 1), immediately swallowed its prey head first, and disappeared under dense vegetation. The entire process, from the beginning of the chase until the lizard finished swallowing its prey, lasted under 1 min.